Estimating Tree Frontal Area in Urban Areas Using Terrestrial LiDAR Data

نویسندگان

  • Yitong Jiang
  • Qihao Weng
  • James H. Speer
  • Steven Baker
چکیده

Surface roughness parameters, such as roughness length and displacement height, impact the estimation of surface moisture, and the frontal areas of buildings and trees are two components that contribute to surface roughness in urban areas. Research on tree frontal area has not been conducted in urban areas before, and we hope to fill that gap in the literature with this study by using Terrestrial Light Detection and Ranging (LiDAR) data to estimate tree frontal areas in Warren Township, Indianapolis, IN, USA. We first estimated the frontal areas of individual trees based on their morphology, then calibrated a regression model to estimate the tree frontal area in 30 m pixels using parameters derived from LiDAR data and tree inventory data. The parameters included tree crown base area, height, width, conditions, defects, maintenances, genera, and land use. The validation shows that R2 yielded values ranging from 0.84 to 0.88, and RMSEs varied with tree category. The tree categories were identified based on the height and broadness of the canopy, which indicated the degree of resistance to air flow. This type of model can be used to empirically determine local roughness values at the tree-level for any city with a complete tree inventory. With the strong correlation between trees’ frontal area and crown base area, this model may also be used to determine local roughness value at 30 m resolution with NLCD (National Land Cover Database) tree canopy cover data as a component. A proper tree categorization according to the vertical air resistance, e.g., height and canopy density, was effective to reduce the RMSE in tree frontal area estimation. Geometric parameters, such as height, crown base height, and crown base area extracted from Airborne LiDAR, which demand less storage and computation capacity, may also be sufficient for tree frontal area estimation in the areas where Terrestrial LiDAR is not available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI-SCALE BASED EXTRACION OF VEGETATION FROM TERRESTRIAL LiDAR DATA FOR ASSESSING LOCAL LANDSCAPE

In this study, we propose a method to accurately extract vegetation from terrestrial three-dimensional (3D) point clouds for estimating landscape index in urban areas. Extraction of vegetation in urban areas is challenging because the light returned by vegetation does not show as clear patterns as man-made objects and because urban areas may have various objects to discriminate vegetation from....

متن کامل

Estimating Biophysical Parameters of Individual Trees in an Urban Environment Using Small Footprint Discrete-Return Imaging Lidar

Quantification of biophysical parameters of urban trees is important for urban planning, and for assessing carbon sequestration and ecosystem services. Airborne lidar has been used extensively in recent years to estimate biophysical parameters of trees in forested ecosystems. However, similar studies are largely lacking for individual trees in urban landscapes. Prediction models to estimate bio...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Estimating Height and Diameter Growth of Some Street Trees in Urban Green Spaces

Estimating urban trees growth, especially tree height is very important in urban landscape management. The aim of the study was to predict of tree height base on tree diameter. To achieve this goal, 921 trees from five species were measured in five areas of Mashhad city in 2014. The evaluated trees were ash tree (Fraxinus species), plane tree (Platanus hybrida), white mulberry (Morus alba), ail...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016